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SUMMARY: SPARSE SPATIAL RANDOM GRAPHS

Network models are tailored for different applied problems:

I social networks: to describe friendship between individuals;
I email communication;
I biological networks: interactions between proteins.

A network may be represented as a set of nodes (individuals) and edges (interactions).

EXCHANGEABLE RANDOM MEASURES

According to (Caron & Fox; 2017), a graph is represented as a point process

Z :=
∑
i≥1

∑
j≥1

zi,jδ(θi ,θj )

I θi ∈ R+: is the label of node i , i.e., time of appearance of the node;

I zi,j : edge between node i and j , with zi,j = 1 if the nodes are connected, 0
otherwise.

Z is typically assumed to be joint exchangeable, i.e.,

Z (Ai × Aj )
d
= Z (Aπ(i) × Aπ(j)), i, j ∈ N

for any permutation π of N and any interval Ai = [h(i − 1), hi], h > 0.



Panero, Caron & Rousseau (2021) would like to:

I include covariate variables (age, job, gender) in the network to better describe the
interactions;

I describe both dense and sparse graphs.

SPATIAL RANDOM GRAPHS

Panero, Caron & Rousseau (2021) deal with the following:

Z :=
∑
i≥1

∑
j≥1

zi,jδ(θi ,θj ,xi ,xj )

I θi , zi,j represent again nodes and edges;

I the probability of connection between nodes depends on ϑi = (xi ,wi ), where wi

is a sociability parameter.

Z has the following two properties:

I joint exchangeable with respect to the label coordinates θi ;

I isometric invariant with respect to the space coordinates.

PRIOR DISTRIBUTION

The relevant quantities {(θi , xi ,wi )}i≥1 are collected in a completely random measure

µ̃ :=
∑
i≥1

wiδ(xi ,wi )

having Lévy intensity given by ρ(dw)dθdx .
The interaction between nodes is specified as follows:

zi,j |{(θi , xi ,wi )}i≥1 ∼ Bernoulli

(
1− exp

{
−

2wi wj

1 + |xi − xj |β

})

The authors are able to:

I choose a regularly varying Lévy intensity ρ to accommodate for real data
problems;

I perform simulations and posterior inference;

I provide asymptotic properties in times

COMMENTS AND DISCUSSION

Benefits of the approach:

I to introduce covariate to each node and to accommodate for real data problems;

I theoretical guarantees of the proposed approach, i.e., asymptotic results on the
number of nodes, edges, etc.;

I computational approach which reduces the computational complexity.

Open problems and questions:

I differentially private sparse spatial random graphs, as in (Borgs, Chayes & Smith;
2015)?

I dependent spatial random graphs based on dependent completely random
measures?

I how to face prediction with spatial random graphs in presence of new nodes?

HOW TO FACE PREDICTION?

In many problems, one is interested to face prediction:

I predict new connections between nodes;

I out of sample prediction, allowing the possibility of observing new nodes.

These problems are relevant in biological frameworks, e.g., to predict protein
interactions. Some other proposals are available in the literature:

I (Williamson; 2016)

I (Zhou; 2015).

Questions:

I is it possible to face prediction when the graph is represented as a point process?

I in general, how to define spatial random graphs to face prediction problems?



DEPENDENT SPATIAL RANDOM GRAPHS

Consider a multiple-sample framework for random graphs:

Z1, . . . ,Zd

where
Z` =

∑
i≥1

∑
j≥1

zi,j,`δ(θi,`,θj,`,xi,`,xj,`), ` = 1, . . . , d .

Here one needs to exploit dependent random measures to model the prior opinion:

µ̃` =
∑
i≥1

wi,`δ(xi,`,wi,`), as ` = 1, . . . , d .

Questions:

I is it possible to induce dependence across these spatial random graphs?

I are compound random measures (Griffin & Leisen; 2017) useful in this context?
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MEASURING DEPENDENCE IN THE

WASSERSTEIN DISTANCE FOR

BAYESIAN NONPARAMETRIC

MODELS

SUMMARY: DEPENDENCE IN BNP MODELS

Partial exchangeability : a probabilistic dependence across heterogeneous populations.

PARTIAL EXCHANGEABILITY (k = 2)
The two sequences

{
(Xi,j )j≥1 : i = 1, 2

}
are partially exchangeable iff

(X1,1, · · · ,X1,n1 ,X2,1, · · · ,X2,n2 )
d
= (X1,σ(1), · · · ,X1,σ(n1),X2,π(1), · · · ,X2,π(n2))

for every n1, n2 ≥ 1 and every permutation σ and π of {1, . . . , n1} and {1, . . . , n2}.

By de Finetti’s representation theorem
{

(Xi,j )j≥1 : i = 1, 2
}

are partially exchangeable
iff there exists a vector of dependent random probability measures (p̃1, p̃2) such that:

(X1,j1 ,X2,j2 )|p̃1, p̃2
iid∼ p̃1 × p̃2,

(p̃1, p̃2) ∼ Q,

where Q is called the de Finetti measure of the sequence.

I p̃1 = p̃2: corresponds to exchangeablity, i.e., homogeneity across data;

I p̃1 6= p̃2: corresponds to a general situation of dependence across data.



Main problems addressed by (Catalano, Lijoi & Prünster; 2021):

I how to quantify dependence of (p̃1, p̃2) measuring how close we are to
exchangeability;

I define a distance to measure the dependence, based on the Wasserstein metric.

Several Bayesian nonparametric models to accommodate for heterogeneity are based
on transformations of vectors of random measures (µ̃1, µ̃2):

I additive structures: (Müller, Quintana & Rosner; 2004), (Lijoi, Nipoti & Prünster;
2014);

I hierarchical structures: (Teh, Jordan, Beal & Blei; 2006) , (C, Lijoi, Orbanz &
Prünster; 2019), (Griffin & Leisen; 2017);

I nested structures: (Rodriguez, Dunson & Gelfand; 2008).

ASSUMPTIONS

Assume that (p̃1, p̃2) is obtained as a suitable transformation of a random vector
(µ̃1, µ̃2)

I µ̃ := (µ̃1, µ̃2): is a completely random vector with the same marginals;

I µ̃co := (µ̃co
1 , µ̃

co
2 ): the comonotonic vector, where µ̃co

1 = µ̃co
2 almost surely.

The authors define the following distance

dW (µ̃, µ̃co) := sup
A
W
((

µ̃1(A)

µ̃2(A)

)
,

(
µ̃co

1 (A)

µ̃co
2 (A)

))
whereW denotes the Wasserstein metric. They provide suitable bounds for different
Bayesian nonparametric models:

I GM-dependent completely random measures (Lijoi, Nipoti & Prünster; 2014);

I compound random measures (Griffin & Leisen; 2017);

I GM-dependent random hazard rates (Lijoi & Nipoti; 2014).

COMMENTS AND DISCUSSION

Benefits of the approach:

I introduction of a new distance suitable for spaces of measures;

I the measure of dependence takes into account infinite dimensionality of the
problem, overcoming the correlation;

I it provides us with a guide in the selection of the hyperparameters.

Open problems and questions:

I how close the posterior distribution of (µ̃1, µ̃2) is to exchangeability?

I difference between dW (µ̃1, µ̃2) and dW (µ̃, µ̃ex )?

I tightness of the upper bounds? Is it possible to determine lower bounds?

BOUNDS ON POSTERIOR QUANTITIES

Remind Compound random measures of (Griffin & Leisen; 2017):

µ̃i |η̃ =
∑
j≥1

mi,j Jjδx̃j

where

I (m1,j ,m2,j )
iid∼ h, where h is a score distribution;

I η̃ =
∑

j≥1 Jjδx̃j
is a a completely random measure with Lévy measure ν∗.

BNP MODEL

Consider the following Bayesian nonparametric model for X-valued observations:

(X1,j1 ,X2,j2 )|p̃1, p̃2
iid∼ p̃1 × p̃2

(p̃1, p̃2) =

(
µ̃1

µ̃1(X)
,

µ̃2

µ̃2(X)

)



POSTERIOR REPRESENTATION

Let Xi := (Xi,1, . . . ,Xi,ni ), as i = 1, 2, be a sample from the model, then:

(µ̃1, µ̃2)|(Xi , ui )
2
i=1

d
= (µ̃′1, µ̃

′
2) +

k∑
`=1

(T1,`,T2,`)σ`δx∗
`

(?)

Questions:

I is it possible to measure how far the random vector (?) is from the exchangeable
case?

I is it possible to do the same for other Bayesian nonparamteric models, in which a
posterior representation is available?
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INFORMATIVE MODEL-BASED

CLUSTERING VIA CENTERED

PARTITION PROCESSES

SUMMARY: CENTERED PARTITION PROCESSES

CLUSTERING ISSUE

We are provided with

I [N] := {1, . . . ,N}: first N natural numbers, representing N different objects, e.g.,
birth defects;

I an initial partition c0 of the N objects.

How can we define a prior distribution on the space of partitions to include our prior
guess c0?

A partition c of [N] may be conveniently described using:

I K : number of blocks in the partition;

I {B1, . . . ,BK }: blocks of the partition, where Bk contains the cluster points in the
k th cluster, and |Bk | = λk , with the constraint

K∑
k=1

λk = N.



In the existing literature, different proposals to define a prior on the space of partitions
are available:

I exchangeable models: the prior probability of c depends only on the cluster sizes
λ1, . . . , λk (Gnedin & Pitman; 2006);

I different proposals to relax exchangeablity, see (MacEachern; 1999).

EXCHANGEABLE PARTITION PROBABILITY FUNCTION

Under the exchangeable framework, the prior distribution on the space of partitions is
called Exchangeable Partition Probability Function (EPPF).
A large class of EPPFs is the one induced by Gibbs-type priors:

p0(c) = Π
(N)
K (λ1, . . . , λk ) = VN,K

K∏
k=1

(1− σ)λk−1

where (a)b = Γ(a + b)/Γ(a), for a, b > 0. The parameter σ < 1 and the non–negative
weights {VN,K : N ≥ 1, 1 ≤ K ≤ N} must satisfy a recurrence relation.
See (Gnedin & Pitman; 2006) and (De Blasi et al.; 2015).

Idea of (Paganin et al.; 2021): include the prior guess c0 by a suitable penalization of
the EPPF.

CENTERED PARTITION PROCESSES

Ingredients:

I p0 is a baseline EPPF;

I d is a distance in the space of partitions;

I ψ is a penalization term.

The proposed centred partition process is associated with the following prior on the
space of partitions

p(c|c0, ψ) ∝ p0(c)e−ψd(c,c0)

We have two limiting situations:

I ψ → 0: baseline EPPF;

I ψ → +∞: c = c0 with probability one.

COMMENTS AND DISCUSSION

Benefits of the approach:

I include the prior guess c0 in the model;

I prior calibration of the parameter ψ;

I it allows to measure the uncertainty of the partition.

Open problems and questions:

I predictive and posterior properties of the model: is this tractable from a
mathematical stand point?

I how can you improve the performance of the algorithm for prior calibration of ψ?

I extension to the case of feature allocation models: is this interesting?

FEATURE ALLOCATION MODELS

Feature allocations are combinatorial structures:

I generalize the notion of partition, see (Broderick, Jordan & Pitman; 2013).

I i ∈ [N] represents an individual which may display multiple features.

Denote by x1, . . . , xK the K distinct features out of the N individuals and

Bk := {i ∈ [N] : i displays feature k}, mk := |Bk |.

I An index i may belong to more then one set Bk , this means that it displays more
then one feature;

I mk is the number of individuals displaying feature xk .

EXCHANGEABLE FEATURE ALLOCATIONS

I A random feature allocation f is termed exchangeable when its distribution
depends only on m1, . . . ,mK , and not on the features’ labels.

I Exchangeable feature allocation probability function (EFPF): is the distribution of
the random feature allocation.



Examples of EFPF are the following:

I the EFPF induced by the three-parameters Indian Buffet Process (Teh, Görür,
Ghahramani; 2009)

p(f ) =
1

K !

(
α

(c + 1)N−1

)K
exp

{
−α

N∑
i=1

(σ + c)i−1

(1 + c)i−1

} K∏
k=1

(1−σ)mk−1(c+σ)N−mk

I possible generalization, e.g., Gibbs-type Indian Buffet Processes by (Heaukulani
& Roy; 2020).

Questions:

I is it possible to define centred feature allocation models?

I is this an interesting extension of the model?

I is there any application, where one is provided with a prior guess f0 for a feature
allocation?

REFERENCES

I BRODERICK T., JORDAN M.I. and PITMAN J. (2013). Cluster and feature modeling from
combinatorial stochastic processes. Statistical Science, 28, 289–312.

I DE BLASI P., FAVARO S., LIJOI A., MENA R. H., PRÜNSTER I. and RUGGIERO M. (2015). Are
Gibbs-type priors the most natural generalization of the Dirichlet process? IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37, 212–229.

I GNEDIN A. and PITMAN J. (2006). Exchangeable Gibbs partitions and Stirling triangles.
Journal of Mathematical Sciences, 138, 5674–5685.

I HEAUKULANI C. and ROY, D.M. (2020). Gibbs-type Indian Buffet Processes. Bayesian
Analysis, 15, 683–710.

I MACEACHERN S. N. (1999). Dependent nonparametric processes. In Proceedings of the
Bayesian Section., 50–55. Alexandria, VA: American Statistical Association.

I PAGANIN S., HERRING A.H., OLSHAN A.F. and DUNSON D.B. (2021). Centered Partition
Processes: Informative Priors for Clustering. Bayesian Analysis, in press.

I TEH Y.W., GÖRÜR D. and GHAHRAMANI Z. (2009). Indian Buffet Processes with Power-law
Behavior. In Proceedings of the International Conference on Artificial Intelligence and
Statistics.


