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Measuring dependence

[ C., Lijoi, Priinster (2021). AoS, to appear. ]
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(Py, Py) = (T(iiy), T(fy)) with i, = ji,
» (7, fI,) random measures with L increments (CRVs) = bivariate Lévy measure
» T component-wise transformation (normalization, exponential, kernel mixture)

Goal: Measure dependence 1) genericwrt T
2 (7% 79%) 2) more than two groups
H2 ‘ 3) Beyond state-of-the-art Corr(P,(A), Po(A))
fi, = Ji, a.s. = Exchangeability
Idea: measure dependence via distance on CRVs

. d(Z (f i), 7 (A7 057) =0 &= i = as.
1

Results

1. Define 1st informative & tractable distance on CRVs

2. Tight bounds in terms of the Lévy intensities

3. Measure dependence for well-known CRVs in terms of hyperparameters
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Bayesian nonparametrics

X, ...X |PXP P~Q

» Q prior distribution of unknown parameter P € Py with large support =

flexible inference through P|X,, ..., X,

ce Ay

d
) de Finetti theorem & exchangeable observations (X, X5, X3) = (X,, X5, X,)

) Bayesian homogeneity assumption “equivalent” to iid observations

Covariates introduce heterogeneity!

Categorical covariate with d=2 groups (for simplicity)

Xy oo X Vi oo Y, | (P, Py) ~ P X P (P,,P))~Q

ceey Ay

) partially exchangeable observations (X, ¥, X,) d G, YL, X))

Dependence of (P, P,) regulates borrowing of information across groups

0
-

LA, = No borrowing & independent observations

P, =P,as. = Maximal borrowing & exchangeable observations
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Distance between CRVs

~ ~ ex ~ ~ ex
dy & Hi & ll~1 N —sup W 2 ﬂ1(A) 7 ll~1 X(A)
i, is Aex fi5(A) AS(A)

where Wis the Wasserstein distance (of order 2) between probabilities in R2.

WP.QR=  inf  EIX-Y[?= inf Jux—yan(dx,dy)
40 reC(P,0)

X,Y): X2P & Y2

Under mild conditions 3 an optimal coupling of the form (X, Y) = (X, T(X)).

) Pros: takes into account the geometry of 5
the space = Ideal for distributions with
different support

) Cons: difficult to evaluate in R2:
1. No explicit expression for OT map T
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L (g, g%

2. Ifwe find T, (difficult) bivariate integral
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H1
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Multivariate Lévy intensities

Result. Find a tight bound in terms of the Lévy intensities
For simplicity we focus on homogeneous v(dv,, dv,, dx) = aPy(dx)p(dv,, dv,)

b Exchangeability if Support(p) C {(v;,vy) 1 v; = 1}
» In BNP: infinite mass around the origin

\ ) If p has finite mass r, (fi;(A), fiy(A)) has a
[ compound Poisson distribution

Idea: one can approximate any CRV with a compound Poisson distribution by
removing a neighborhood of the origin

Theorem (Bound in terms of Lévy intensity)

ac\ (5 , L p 17
dy| ()| o ) ) < lim rw| = S
Ho Hy r—>+oo r \ r
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Current developments

[ C., Lavenant, Lijoi, Priinster]

Recap [ C., Lijoi, Priinster (2021). AoS, to appear. ]

~ ~ ex ~ ~ X,
do ()P ) ) = s w| & AA ) o ”‘eX(A)
i Hy AeX fi,(A) A57(A)
= tractable principled measure of dependence for generic CRV-BNP models

Current research [ C., Lavenant, Lijoi, Priinster. Work in progress ]

|
lim \/;W — )

r—>+oo r

Coincides with dy/(p, p*) between measures with co mass! [Figalli & Gigli, 2009]

Wasserstein Index of Dependence in [0,1]
dy(p, p&*)
dy(pind, p&X)

WID(P,,P,) =1 — 0 < independence
1 <= exchangeability
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» > 7.5, ~ CRM(v)

» (m;,mn) ~h

Compound Random Measures

[ Griffin & Leisen (2017), JRSSB ]

7 +o0
M z my; .
</22> p <I712J.> j C X;

yy(dv, dx) = a Py(dx) (1 —v)"" v, (v) dv

+00

i=1

h=fQf, f=gamma(p,1)

Marginally, f,, fi, are gamma CRMs & ¢ only adjusts for dependence (how?)

( )
Theorem (Bound for compound random measures)
3 oe —— Simulated distance
€ o0s —%— Theoretical upper bound
2 E 10% and 90% quantiles
T ~ X T 04
M #° s
03
dy I B <4 a K(p) :
Ha Ha go2
g. 0.1
g
0
)
. J
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