Measuring dependence in the Wasserstein distance for Bayesian nonparametric models

Marta Catalano

University of Torino

One World YoungStatS - 21 April 2021.

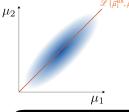
Measuring dependence

[C., Lijoi, Prünster (2021). AoS, to appear.]

 $(\tilde{P}_1, \tilde{P}_2) = (T(\tilde{\mu}_1), T(\tilde{\mu}_2))$ with $\tilde{\mu}_1 \stackrel{d}{=} \tilde{\mu}_2$

▶ $(\tilde{\mu}_1, \tilde{\mu}_2)$ random measures with \bot increments (CRVs) \Rightarrow bivariate Lévy measure

▶ T component-wise transformation (normalization, exponential, kernel mixture)



3) Beyond state-of-the-art Corr($\tilde{P}_1(A), \tilde{P}_2(A)$) $\tilde{\mu}_1 = \tilde{\mu}_2 \text{ a.s.} \Rightarrow \text{Exchangeability}$

Idea: measure dependence via distance on CRVs

 $d\big(\mathscr{L}\big(\tilde{\mu}_1,\tilde{\mu}_2\big),\mathscr{L}\big(\tilde{\mu}_1^{\mathsf{ex}},\tilde{\mu}_2^{\mathsf{ex}}\big)\big)=0\iff \tilde{\mu}_1=\tilde{\mu}_2 \text{ a.s.}$

Results

- 1. Define 1st informative & tractable distance on CRVs
- 2. Tight bounds in terms of the Lévy intensities
- 3. Measure dependence for well-known CRVs in terms of hyperparameters

Bayesian nonparametrics

 $X_1, \dots, X_n | \tilde{P} \stackrel{\text{iid}}{\sim} \tilde{P} \qquad \tilde{P} \sim Q$

- ▶ Q prior distribution of unknown parameter $\tilde{P} \in \mathbb{P}_{\mathbb{X}}$ with large support \Rightarrow flexible inference through $\tilde{P} | X_1, ..., X_n$
- ▶ de Finetti theorem \Leftrightarrow exchangeable observations $(X_1, X_2, X_3) \stackrel{d}{=} (X_2, X_3, X_1)$
- Bayesian homogeneity assumption "equivalent" to iid observations

Covariates introduce heterogeneity!

Categorical covariate with d=2 groups (for simplicity)

 $X_1, \dots, X_n, Y_1, \dots, Y_m \,|\, (\tilde{\boldsymbol{P}}_1, \tilde{\boldsymbol{P}}_2) \sim \tilde{P}_1^n \times \tilde{P}_2^m \qquad (\tilde{\boldsymbol{P}}_1, \tilde{\boldsymbol{P}}_2) \sim Q$

▶ partially exchangeable observations $(X_1, Y_1, X_2) \stackrel{d}{=} (X_2, Y_1, X_1)$

Dependence of $(\tilde{P}_1, \tilde{P}_2)$ regulates borrowing of information across groups	
$\tilde{P}_1 \perp \tilde{P}_2$	\Rightarrow No borrowing & independent observations
$\tilde{P}_1 = \tilde{P}_2$ a.s.	\Rightarrow Maximal borrowing & exchangeable observations

Marta Catalano, University of Torino

Distance between CRVs

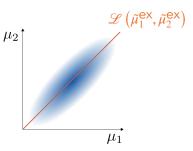
$$d_{W}\left(\mathscr{L}\begin{pmatrix}\tilde{\mu}_{1}\\\tilde{\mu}_{2}\end{pmatrix},\mathscr{L}\begin{pmatrix}\tilde{\mu}_{1}^{e\mathsf{X}}\\\tilde{\mu}_{2}^{e\mathsf{X}}\end{pmatrix}\right) = \sup_{A\in\mathscr{X}} W\left(\mathscr{L}\begin{pmatrix}\tilde{\mu}_{1}(A)\\\tilde{\mu}_{2}(A)\end{pmatrix},\mathscr{L}\begin{pmatrix}\tilde{\mu}_{1}^{e\mathsf{X}}(A)\\\tilde{\mu}_{2}^{e\mathsf{X}}(A)\end{pmatrix}\right)$$

where W is the Wasserstein distance (of order 2) between probabilities in \mathbb{R}^2 .

$$W(P,Q)^{2} = \inf_{(X,Y): \ X \stackrel{d}{=} P \& \ Y \stackrel{d}{=} Q} \mathbb{E} \|X - Y\|^{2} = \inf_{\Gamma \in C(P,Q)} \int \|x - y\|^{2} \Gamma(dx, dy)$$

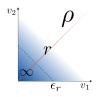
Under mild conditions \exists an optimal coupling of the form (X, Y) = (X, T(X)).

- ▶ Pros: takes into account the geometry of the space ⇒ Ideal for distributions with different support
- Cons: difficult to evaluate in \mathbb{R}^2 :
- 1. No explicit expression for OT map T
- 2. If we find T, (difficult) bivariate integral



Multivariate Lévy intensities

Result. Find a tight bound in terms of the Lévy intensities For simplicity we focus on homogeneous $\nu(dv_1, dv_2, dx) = aP_0(dx)\rho(dv_1, dv_2)$

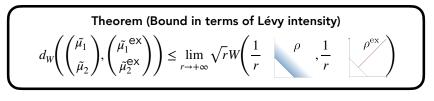


• Exchangeability if Support(ρ) \subset { $(v_1, v_2) : v_1 = v_2$ }

▶ In BNP: infinite mass around the origin

▶ If ρ has finite mass r, $(\tilde{\mu}_1(A), \tilde{\mu}_2(A))$ has a compound Poisson distribution

Idea: one can approximate any CRV with a compound Poisson distribution by removing a neighborhood of the origin



Marta Catalano, University of Torino

5/8

Current developments

[C., Lavenant, Lijoi, Prünster]

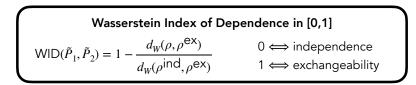
Recap [C., Lijoi, Prünster (2021). AoS, to appear.]

$$d_{W}\left(\binom{\tilde{\mu_{1}}}{\tilde{\mu_{2}}}, \binom{\tilde{\mu_{1}}^{\mathsf{ex}}}{\tilde{\mu_{2}}^{\mathsf{ex}}}\right) = \sup_{A \in \mathcal{X}} W\left(\mathscr{L}\binom{\tilde{\mu_{1}}(A)}{\tilde{\mu_{2}}(A)}, \mathscr{L}\binom{\tilde{\mu_{1}}^{\mathsf{ex}}(A)}{\tilde{\mu_{2}}^{\mathsf{ex}}(A)}\right)$$

 \Rightarrow tractable principled measure of dependence for generic CRV-BNP models

Current research [C., Lavenant, Lijoi, Prünster. Work in progress]

Coincides with $d_W(\rho, \rho^{ex})$ between measures with ∞ mass! [Figalli & Gigli, 2009]



Compound Random Measures

[Griffin & Leisen (2017), JRSSB]

$$\begin{pmatrix} \tilde{\mu_1} \\ \tilde{\mu_2} \end{pmatrix} = \sum_{i=1}^{+\infty} \begin{pmatrix} m_{1,i} \\ m_{2,i} \end{pmatrix} J_i \, \delta_{X_i}$$

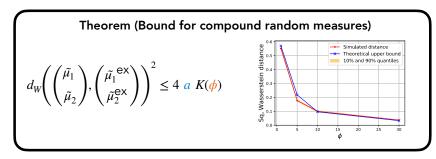
 $\blacktriangleright \sum_{i=1}^{n} J_i \delta_{X_i} \sim \mathsf{CRM}(\nu_0)$

 $(m_{i1}, m_{i2}) \sim h$

$$\nu_0(dv, dx) = a P_0(dx) (1-v)^{\phi-1} v^{-1} \mathbf{1}_{(0,1)}(v) dv$$

 $h = f \otimes f$, $f = gamma(\phi, 1)$

Marginally, $\tilde{\mu}_1, \tilde{\mu}_2$ are gamma CRMs & ϕ only adjusts for dependence (how?)



Marta Catalano, University of Torino

References

- C., Lijoi, Prünster (2020). Approximation of Bayesian models for time-to-event data. EJS.
- ▶ C., Lijoi, Prünster (2021). Measuring dependence in the Wasserstein distance for Bayesian nonparametric models. Aos, to appear.
- C., Lavenant, Lijoi, Prünster (2021+). Wasserstein index of dependence. Work in progress.
- > Epifani & Lijoi (2010). Nonparametric priors for vectors of survival functions. Stat. Sinica.
- Figalli & Gigli (2009). A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions. Journal de Mathématiques Pures et Appliquées
- Griffin & Leisen (2017). Compound random measures and their use in Bayesian nonparametrics. JRSSB
- Lijoi, Nipoti & Prünster (2014). Bayesian inference with dependent normalized completely random measures. Bernoulli.
- Mariucci & Reiß (2018). Wasserstein and total variation distance between marginals of Lévy processes. EJS.
- Villani (2008). Optimal Transport: Old and New. Springer Berlin Heidelberg.