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‣  prior distribution of unknown parameter  with large support  
flexible inference through      

‣ de Finetti theorem  exchangeable observations  

‣ Bayesian homogeneity assumption “equivalent” to iid observations   

Covariates introduce heterogeneity!  

Categorical covariate with d=2 groups (for simplicity) 

               

‣ partially exchangeable observations     

 Dependence of  regulates borrowing of information across groups 

            No borrowing & independent observations 

 a.s.      Maximal borrowing & exchangeable observations                 

X1, …, Xn | P̃ ∼ P̃ P̃ ∼ Q

Q P̃ ∈ ℙ𝕏 ⇒
P̃ |X1, …, Xn

⇔ (X1, X2, X3) = (X2, X3, X1)

X1, …, Xn, Y1, …, Ym | (P̃1, P̃2) ∼ P̃n
1 × P̃m

2 (P̃1, P̃2) ∼ Q

(X1, Y1, X2) = (X2, Y1, X1)

(P̃1, P̃2)

P̃1 ⊥ P̃2 ⇒

P̃1 = P̃2 ⇒

Bayesian nonparametrics
iid

2

d

d
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Measuring dependence 

 with  

‣ ( ) random measures with  increments (CRVs)  bivariate Lévy measure  

‣  component-wise transformation (normalization, exponential, kernel mixture) 

Goal: Measure dependence

(P̃1, P̃2) = (T(μ̃1), T(μ̃2)) μ̃1 = μ̃2

μ̃1, μ̃2 ⊥ ⇒
T

ℒ (μ̃ex
1 , μ̃ex

2 )

d

Results 
1. Define 1st informative & tractable distance on CRVs  
2. Tight bounds in terms of the Lévy intensities 
3. Measure dependence for well-known CRVs in terms of hyperparameters

[ C., Lijoi, Prünster (2021). AoS, to appear. ]

 a.s.  Exchangeability 

Idea: measure dependence via distance on CRVs 

  a.s.

μ̃1 = μ̃2 ⇒

d(ℒ (μ̃1, μ̃2), ℒ (μ̃ex
1 , μ̃ex

2 )) = 0 ⟺ μ̃1 = μ̃2

3

1) generic wrt T   
2) more than two groups 
3) Beyond state-of-the-art Corr(P̃1(A), P̃2(A))
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Distance between CRVs

  

where  is the Wasserstein distance (of order 2) between probabilities in . 

 

Under mild conditions  an optimal coupling of the form . 

dW(ℒ (μ̃1

μ̃2
), ℒ (μ̃1

ex

μ̃ex
2 )) = sup

A∈𝒳
W(ℒ (μ̃1(A)

μ̃2(A) ), ℒ (μ̃1
ex(A)

μ̃ex
2 (A) ))

W ℝ2

W(P, Q)2 = inf
(X,Y ): X=P & Y=Q

𝔼∥X − Y∥2 = inf
Γ∈C(P,Q) ∫ ∥x − y∥2 Γ(dx, dy)

∃ (X, Y ) = (X, T(X))

d d

‣ Pros: takes into account the geometry of 
the space  Ideal for distributions with 
different support 

‣ Cons: difficult to evaluate in : 
1. No explicit expression for OT map T 
2. If we find T,  (difficult) bivariate integral

⇒

ℝ2

4

ℒ (μ̃ex
1 , μ̃ex

2 )
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Multivariate Lévy intensities

Result. Find a tight bound in terms of the Lévy intensities 
For simplicity we focus on homogeneous  ν(dv1, dv2, dx) = aP0(dx)ρ(dv1, dv2)

‣ Exchangeability if Support  

‣ In BNP: infinite mass around the origin 

‣ If  has finite mass ,  has a 
compound Poisson distribution

(ρ) ⊂ {(v1, v2) : v1 = v2}

ρ r (μ̃1(A), μ̃2(A))

Idea:  one can approximate any CRV with a compound Poisson distribution by 
removing a neighborhood of the origin

Theorem (Bound in terms of Lévy intensity) 

  dW((
μ̃1

μ̃2), (μ̃1
ex

μ̃ex
2 )) ≤ lim

r→+∞
rW( 1

r
,

1
r )
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Compound Random Measures

 

‣                     

‣                             ,          

Marginally,  are gamma CRMs &  only adjusts for dependence (how?)

(μ̃1
μ̃2) =

+∞

∑
i=1

(m1,i
m2,i) Ji δXi

+∞

∑
i=1

Ji δXi
∼ CRM(ν0) ν0(dv, dx) = a P0(dx) (1 − v)ϕ−1v−11(0,1)(v) dv

(mi,1, mi,2) ∼ h h = f ⊗ f f = gamma(ϕ,1)

μ̃1, μ̃2 ϕ

Theorem (Bound for compound random measures) 

 

           

dW((
μ̃1

μ̃2), (μ̃1
ex

μ̃ex
2 ))

2

≤ 4 a K(ϕ)

[ Griffin & Leisen (2017), JRSSB ]
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Current developments

Recap [ C., Lijoi, Prünster (2021). AoS, to appear. ] 

                                  

 tractable principled measure of dependence for generic CRV-BNP models 

Current research [ C., Lavenant, Lijoi, Prünster. Work in progress ] 

 

Coincides with  between measures with  mass! [Figalli & Gigli, 2009]  

dW((μ̃1

μ̃2
), (μ̃1

ex

μ̃ex
2 )) = sup

A∈𝒳
W(ℒ (μ̃1(A)

μ̃2(A) ), ℒ (μ̃1
ex(A)

μ̃ex
2 (A) ))

⇒

lim
r→+∞

rW( 1
r

,
1
r ) ≥ dW((

μ̃1

μ̃2), (μ̃1
ex

μ̃ex
2 ))

dW(ρ, ρex) ∞

Wasserstein Index of Dependence in [0,1] 

                                                                       0  independence 
                                                                       1  exchangeability              

⟺
⟺

WID(P̃1, P̃2) = 1 −
dW(ρ, ρex)

dW(ρind, ρex)

7

[ C., Lavenant, Lijoi, Prünster]
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